Sympathetic inhibition, leptin, and uncoupling protein subtype expression in normal fasting rats.
نویسندگان
چکیده
To further investigate neural effects on leptin and uncoupling proteins (UCPs), we studied in vivo perturbations intended to block adrenergic input to peripheral tissues. We examined plasma leptin, leptin mRNA, and adipose and muscle UCP subtype mRNA in rats treated with α-methyl- p-tyrosine methyl ester (AMPT-ME), which inhibits catecholamine synthesis and 6-hydroxydopamine (6HDA), which is toxic to catecholinergic nerve terminals but, unlike AMPT-ME, does not enter the central nervous system. Intraperitoneal AMPT-ME, 250 mg/kg, was administered at 1800 and 0700 the following day, and rats were killed at 1200-1400. All rats were fasted with free access to water during this time. Intraperitoneal AMPT-ME increased plasma leptin by 15-fold, increased interscapular brown adipose tissue (IBAT) and epididymal fat leptin mRNA by 2- to 2.5-fold, and also increased plasma insulin and glucose concentrations. Intraperitoneal AMPT-ME decreased IBAT UCP-3 mRNA to 40% of control, while it increased epididymal adipose UCP-3 mRNA approximately twofold. Intravenous AMPT-ME, 250 mg/kg, administered to conscious rats for 5 h decreased lumbar sympathetic nerve activity, increased plasma leptin (5.89 ± 1.43 compared with 2.75 ± 0.31 ng/ml in vehicle-treated rats, n = 7, P < 0.05), and decreased cardiac rate with no sustained change in blood pressure. Intraperitoneal 6HDA, 100 mg/kg, as a single dose at 1800, increased plasma leptin approximately twofold after 18-20 h, increased IBAT (but not epididymal fat) leptin mRNA by two- to threefold, and decreased IBAT UCP-3 mRNA to 30-40% of control. Neither AMPT-ME nor 6HDA significantly altered mRNA encoding gastrocnemius muscle UCP-3, IBAT UCP-1, or IBAT and epididymal UCP-2. In summary, AMPT-ME and 6HDA increased plasma leptin and upregulated leptin mRNA expression. AMPT-ME also resulted in complex tissue and subtype-specific modulation of adipose UCP mRNA. These data are consistent with interaction between leptin and sympathetic nerve activity (SNA) in regulation of fat cell energy utilization. However, the in vivo modulation of leptin and UCPs appears complex and, beyond a causal effect of SNA per se, may depend on concurrent changes in plasma insulin, glucose, and circulatory hemodynamics.
منابع مشابه
Leptin induction of UCP1 gene expression is dependent on sympathetic innervation.
We previously demonstrated that leptin increases uncoupling protein 1 (UCP1) and lipoprotein lipase (LPL) gene expression in brown adipose tissue (BAT) of rats. To determine whether the induction of these transcripts is dependent on sympathetic innervation of BAT, we unilaterally surgically denervated interscapular BAT in both pair-fed and leptin (0.9 mg/day by infusion)-treated rats. In pair-f...
متن کاملDecreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart
Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...
متن کاملEffects of rearing temperature on sympathoadrenal activity in young adult rats.
Animals reared at 18 degrees C exhibit enhanced innervation of brown adipose tissue (BAT) and greater cold tolerance as adults, yet gain more weight when fed an enriched diet compared with rats reared at 30 degrees C. To explore this paradox, sympathoadrenal activity was examined using techniques of [(3)H]norepinephrine ([(3)H]NE) turnover and urinary catecholamine excretion in male and female ...
متن کاملRespiratory Uncoupling Lowers Blood Pressure Through a Leptin-Dependent Mechanism
Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance–related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in ske...
متن کاملRespiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice.
Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance-related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in ske...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 4 Pt 1 شماره
صفحات -
تاریخ انتشار 1999